BRACERS Record Detail for 53187

To access the original letter, email the Russell Archives.

Collection code
RA3
Recent acquisition no.
422
Box no.
6.51
Source if not BR
La Chaux-de-Fonds Bib.
Recipient(s)
Couturat, Louis
Sender(s)
BR
Date
1902/01/07
Form of letter
ALS(X)
Pieces
2
BR's address code (if sender)
FH
Notes and topics

In Revue des Questions Scientifiques (Oct. 1901), Lechalas criticizes him; it needs a reply. BR's joint book with A.N. Whitehead. 22 "Pp" (primitive propositions).

Transcription

BR TO LOUIS COUTURAT, 7 JAN. 1902
BRACERS 53187. ALS. La Chaux-de-Fonds Bib., Suisse. Russell–Couturat 1: #90
Edited by A.-F. Schmid


Friday’s Hill,
Haslemere.a
7 janvier 1902

Cher Monsieur,

Je vous écris pour vous demander des renseignements au sujet de Inédits de Leibniz que vous allez publier : on m’a envoyé votre livre pour en faire un compte rendub pour Mind ; mais je pense que si les Inédits vont paraître bientôt je ferai mieux d’attendre, puisqu’il serait mieux de discuter votre livre et les inédits en même temps.

Dans la Revue des questions scientifiques d’octobre, M. Lechalas adresse une critique à mon article qui a besoin d’une réponse. Il fait observer que les évènements psychologiques ne sont point déterminés par une date, si on ne mentionne pas la personne à laquelle ces évènements arrivent. Ceci est fort vrai, et pour cette cause, dans mon mémoire, je m’étais placé pour le moment au point de vue solipsiste. Mais ce qui en résulte c’est que les évènements psychiques ont, eux aussi, des positions dans l’espace. Pour développer cette thèse, il faudrait un argument assez long, dont je n’ai pas voulu encombrer mon mémoire. Mais il me faut avouer, que je me suis exprimé d’une manière qui justifie les remarques de M. Lechalas. Je compte développer ce point dans un mémoire aussitôt que je m’adresse de nouveau à la philosophie. Pour le moment, la mathématique m’occupe entièrement. Dans mon cours à Cambridge, j’ai commencé avec 22 Pp de logique générale (telles que le syllogisme), et j’en déduitc toute la mathématique pure, y compris Cantor et la géométrie, sans aucune nouvelle Pp ou idée primitive. Tout ceci paraîtra dans le livre que je compte publier avec Whitehead. On pourrait de même déduire la mécanique rationnelle. Naturellement les axiomes se remplacent par des définitions ; ce procédé est le seul qui soit valable pour la géométrie non-euclidienne. On devrait créer de même des mécaniques non-newtoniennes.

Je retourne dans une semaine à Mill House, Grantchester, Cambridge, pour finir mon cours.

Recevez, cher Monsieur, mes vœux pour vous et Madame Couturat, et l’assurance de mes sentiments très cordiaux.

Bertrand Russell

Notes

aAdresse imprimée b-csic

 

BR TO LOUIS COUTURAT, 7 JAN. 1901
BRACERS 53187. ALS. La Chaux-de-Fonds Bib., Suisse. SLBR 1: #99
Translated and edited by N. Griffin


Friday’s Hill
07 01 1902

Dear Sir,

I am writing you to ask for some information about the Inédits de Leibniz that you are going to publish. Your book1 was sent to me to be reviewed for Mind but I think that if the Inédits are going to appear soon I will do better to wait, since it would be best to discuss your book and the Inédits at the same time.

In the Revue des questions scientifiques of October, Mr. Lechalas addresses a critique to my article which needs a response. He makes the observation that psychological events are not at all determined by a point in time, if we don’t mention the person to whom (in whom) the event is happening. This is very true, and for this reason, in my paper, I put myself more momentarily in the solipsistic point of view. But what resulted from that was that psychological events have, themselves, too, positions in space. In order to develop this thesis, it would require quite a long argument, with which I did not want to encumber my paper. But I must admit that I expressed myself in a way which justified Mr. Lechelas’ remarks. I plan to develop this point in a paper as soon as I turn my attention back to philosophy.

For the moment, mathematics is occupying me completely. In my course at Cambridge, I began with 22 Pp2 of general logic (such as the syllogism)3 and I deduced from them all of pure mathematics, containing Cantor4 and geometry, without an new Pp. or primitive concepts. All of this will appear in the book that I plan to publish with Whitehead. We could even deduce rational mechanics. Naturally the axioms are replaced by definitions; this process is the only one that is valid for non-Euclidean geometry.5 We will have to create the same for non-Newtonian mechanics.

I return in a week to Mill House, Grantchester, Cambridge, in order to finish my course.

I send my best wishes for you and Mme. Couturat.

Bertrand Russell

  • 1

    Your book Louis Couturat, La Logique de Leibniz d'après des documents inédits (1901). The reference to Couturat’s “Inédits de Leibniz” refers to his Opuscules et fragments inédits de Leibniz, which did not appear until 1903. Russell’s review of the former, along with Cassirer’s Leibniz’ System in seinen wissenschaftlichen Grundlagen, appeared in Mind (1903). He reviewed the Inédits in Mind (1904).

  • 2

    22 Pp Primitive propositions, i.e. axioms. Twenty axioms for mathematics, no doubt very similar to the ones used in his lectures, are stated informally in The Principles of Mathematics, ch. 2.

  • 3

    general logic (such as the syllogism) That is, the proposition that if p implies q and q implies r, then p implies r.

  • 4

    containing Cantor That is, Cantor’s transfinite arithmetic.

  • 5

    axioms are replaced by definitions … valid for non-Euclidean geometry Axioms were basic unprovable propositions whose truth was assumed in the deductive system. Definitions, by contrast, were not assumed to be true since they did not presuppose the existence of the item defined. Since the various geometries, Euclidean and non-Euclidean, required different and mutually incompatible axioms, it was not possible to axiomatize them all within a single consistent system. Russell’s way around this problem was to employ definitions instead of axioms for the various types of geometry. The analogous treatment of mechanics, which Russell mentions next, was never undertaken in detail, but see Whitehead’s “On Mathematical Concepts of the Material World”, Philosophical Transactions of the Royal Society (1905).

Publication
SLBR 1: #99 (English trans.)
Schmid, Russell—Couturat 1: #90
Permission
Everyone
Transcription Public Access
Yes
Record no.
53187
Record created
Nov 10, 2010
Record last modified
Nov 26, 2025
Created/last modified by
blackwk